Home
Class 12
MATHS
[" - If "A=[[3,-4],[1,-1]]" ,then prove ...

[" - If "A=[[3,-4],[1,-1]]" ,then prove "A''=[[1+2n,-4n],[n,1-2n]]],[" whore "n" is any positive integer."]

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[3,-4],[1,-1]] , then prove that A^n=[[1+2n,-4n],[n,1-2n]] , where n is any positive integer.

if A=[[3, -4],[ 1, (-1)]] , then prove that A^n=[[1+2 n, -4 n ],[n , 1-2n]] where n is any positive integer.

If A=[(3,-4),(1,-1)] , then prove that A^(n)=[(1+2n,-4n),(n,1-2n)] , where n is any positive integer.

If A,=[[3,-41,1]], then prove that A^(n),=[[1+2n,-4n][2n], where n is any positive integer.

if A =[(3,-4),( 1,-1)] then prove that A^n = [ ( 1+2n, -4n),( n,1-2n)] where n is any positive integer .

if A =[(3,-4),( 1,-1)] then prove that A^n = [ ( 1+2n, -4n),( n,1-2n)] where n is any positive integer .

If A=[{:(3,-4),(1,-1):}] , then prove that A^(n)=[{:(1+2n,-4n),(n,1-2n):}] where n is any positive integer .

Prove the following by principle of mathematical induction If A=[[3,-4] , [1,-1]] , then A^n=[[1+2n, -4n] , [n, 1-2n]] for every positive integer n

Prove the following by principle of mathematical induction If A=[[3,-4] , [1,-1]] , then A^n=[[1+2n, -4n] , [n, 1-2n]] for every positive integer n

If A= [(3 , -4), (1 , -1) ] , then prove that A^n=[(1+2n , -4n), (n , 1-2n) ] , where n is any positive integer.