Home
Class 14
MATHS
(1)/(x-2)+(2)/(x-1)=(6)/(x)" where "x!=1...

(1)/(x-2)+(2)/(x-1)=(6)/(x)" where "x!=1,2

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x: (1)/(x-2)+(2)/(x-1)=(6)/(x) ,x ne 0,1,2

Solve for x: (6)/(x)-(2)/(x-1)=(1)/(x-2);x!=0,1,2

Solve for x: (x-1)/(2x+1) +(2x+1)/(x-1)=2," where "x ne -(1)/(2),1

Solve for x:(x-1)/(2x+1)+(2x+1)/(x-1)=2, where x!=-(1)/(2),1

Solve for x and y : (6)/(x-1)-(3)/(y-2)=1 (5)/(x-1)-(1)/(y-2)=2 , where x ne 1, y ne 2 .

"If" 1/(x - 2) + 2/(x-1) = 6/x then x = ….

(2x-1)/(2x+1)+(2x+1)/(2x-1)=6

tan^(-1)(1-x^(2)-(1)/(x^(2)))+sin^(-1)(x^(2)+(1)/(x^(2))-1) where x!=0) is equal to

If x_(1) = 2 tan^(-1) ((1 + x)/(1 -x)), x_(2) = sin^(-1) ((1 - x^(2))/(1 + x^(2))), " where " x in (0, 1) , then x_(1) + x_(2) is equal to

If x_(1)=2tan^(-1)((1+x)/(1-x)), x_(2)=sin^(-1)((1-x^(2))/(1+x^(2)))," where "x in (0, 1)," then "x_(1)+x_(2) is equal to