Home
Class 12
MATHS
" The value of "sin^(2)42^(@)=cos^(2)73^...

" The value of "sin^(2)42^(@)=cos^(2)73^(@)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of cos^(2)17^(@)-sin^(2)73^(@) is:

Find the value of sin^(2)42^(@)-sin^(2)12^(@) .

Prove that sin^(2)42^(@)-cos^(2)78^(@) .

The value of cos^(2)17^@-sin^(2)73^@ is

Find the values of sin48^(@)-cos42^(@)

The value of sin^(2)42^(@)+sin^(2)48^(@)+tan^(2)60^(@)-cosec30^(@) is equal to :

Find the value of sin 48^(@) sec 42^(@)+cos48^(@) "cosec"42^(@).

The value of [ ( sin^(2) 25^(@) + sin^(2) 65^(@))/(cos^(2) 24^(@) + cos^2 66^(@)) + sin^(2)61^(@) + cos 61^@ sin 29^(@)] is :

sin ^ (2) 42 ^ (@) - cos ^ (2) 78 ^ (@)

The values of cos^(2)73^(0)+cos^(2)47^(0)-sin^(2)43^(0)+sin^(2)107^(0) is equal to: ( b) (1)/(2)(c)(sqrt(3))/(2) (d) sin^(2)73^(@)+cos^(4)73^(@)