Home
Class 12
MATHS
1+cos 56^0 + cos 58^0 - cos 66^0=4cos 28...

`1+cos 56^0 + cos 58^0 - cos 66^0=4cos 28^0 cos 29^0 sin 33^0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that 1+cos 56^(@)+ cos 58^(@)-cos66^(@)=4 cos 28^(@) cos 29^(@) sin 33^(@)

(1+ cos 56^(@) + cos 58^(@) - cos 66^(@))/( cos 28^(@) cos 29^@ sin 33^(@) )=

1+ cso 56^(@) + cos 58^(@) - cos 66^(@)=

If cos56^(0)+cos58^(0)-cos66^(0)-4cos28^(0)-cos29^(@)sin33^(@)=lambda then |2 lambda|=

If 1+cos56^(0)+cos58^(0)-cos66^(0)=k cos28^(0)cos29^(@)sin33^(@) then the value of k is

cos 56 ^(@) + cos 58^(@) - cos 66^(@) - 4 cos 28^(@) cos 29^(@) sin 33 ^(@) =

cos56^(@)+cos58^(@)-cos66^(@)-4cos28^(@)cos29^(@)sin33^(@)=

1+cos56^(@)+cos58^(@)-cos66^(@)=?