Home
Class 12
MATHS
if |z-2i| le sqrt2 , then the maximum va...

if `|z-2i| le sqrt2` , then the maximum value of |3+i(z-1)| is :

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If z is any complex number satisfying |z-3-2i|le 2 , then the maximum value of |2z - 6 + 5 i| is ___

If |z| le 4 then the maximum value of |iz+3-4i| is equal to

If |z-2 + i| le 2, then the greatest value of |z| is

If z a complex number satisfying |z^(3)+z^(-3)|le2 , then the maximum possible value of |z+z^(-1)| is -