Home
Class 11
MATHS
सिद्ध कीजिए कि बिंदु (a cos^(3) theta, a...

सिद्ध कीजिए कि बिंदु `(a cos^(3) theta, a sin^(3) theta)` से होकर जाने वाली तथा सरल रेखा `x sec theta + "y cosec" theta = a` पर लम्ब रेखा का समीकरण `x cos theta - y sin theta = a cos 2 theta` है |

Promotional Banner

Similar Questions

Explore conceptually related problems

Equation of the line passing through the point ( a cos^(3) theta , a sin^(3) theta ) and perpendicular to the line x sec theta + y cosec theta = a is x cos theta - y sin theta = cos 2 theta .

If x sin ^3 theta +y cos^3 theta = sin theta cos theta and x sin theta =y cos theta then x^2 +y^2 is

If x sin^3 theta+ y cos^3 theta = sin theta cos theta and x sin theta = y cos theta, Find the value of x^2 + y^2.

Eliminate theta : x = a ( cos theta + cos 2 theta), y = b ( sin theta + sin 2 theta).

Find dy/dx when x = a (cos theta + theta sin theta) , y = a (sin theta - theta cos theta).

The equation to the straight line passing through the point (a cos^(3)theta,a sin^(3)theta) and perpendicular to the line x sec theta+y csc theta=a is x cos theta-y sin theta=a cos2 thetax cos theta+y sin theta=a cos2 thetax sin theta+y cos theta=a cos2 theta none of these

If sin theta + cos theta = m and sec theta + " cosec " theta = n then