Home
Class 12
MATHS
If f(x)=|x|/(x) then show that {:(" L...

If `f(x)=|x|/(x)` then show that `{:(" Lt"),(xrarr0):}` f(x) does not exist .

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(|x|)/(x) , then show that lim_(xrarr0) f(x) does not exist.

If f(x)=(|x|)/(x) , then show that lim_(xrarr0) f(x) does not exist.

Show that {:(" Lt"),(xrarr0):}(e^(3x)-1)/(x)=3

If f(x) = (|x|)/(x) (x != 0) , then show that underset(x rarr 0)lim f(x) does not exists.

If f(x)={(x-|x|)/x ,x!=0, 2,x=0 , show that lim_(xrarr0) f(x) does not exist.

If f(x) = (|x|)/x then show that Lt_(x to 0) f(x) does not exist.

If f(x)=(|x|)/(x),"show that ,"underset(xrarr0)"lim"f(x) does not exist .

If f(x) is defined as follows: f(x){{:(1,x,gt0),(-1,x,lt0),(0,x,=0):} Then show that lim_(xrarr0) f(x) does not exist.

If f(x) is defined as follows: f(x)={{:(1,x,gt0),(-1,x,lt0),(0,x,=0):} Then show that lim_(xrarr0) f(x) does not exist.

Show that lim_(xrarr0)1/x does not exist.