Home
Class 12
MATHS
If the function f(x)=log(x-2)-log(x-3) a...

If the function `f(x)=log(x-2)-log(x-3) and g(x)=log((x-2)/(x-3))` are identical, then

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x) =log(x-1)-log(x-2) and g(x) =log((x-1)/(x-2)) are identical on

If function f and g given by f (x)=log(x-1)-log(x-2)and g(x)=log((x-1)/(x-2))"are equal" then x lies in the interval.

Find for what values of x the following functions would be identical. f(x)=log(x-1)-log(x-2) and g(x)=log((x-1)/(x-2))

Find for what values of x the following functions would be identical. f(x)=log(x-1)-log(x-2) and g(x)=log((x-1)/(x-2))

Let f(x) = ln(x-1)(x-3) and g(x) = ln(x-1) + ln(x-3) then,

The domain of the function f(x)=log_(2)[log_(3)(log_(4)(x^(2)-3x+6)}]is

The domain of the function f(x)=log_(2)[log_(3)(log_(4)(x^(2)-3x+6)}]is

If f(x)=log(x-5)(2-x), g(x)=log(x-5), h(x)=log(2-x) then

Statement-1 : For real values of x and y the relation y^(2) = 2x - x^(1) - 1 represents y as a function of x. Statement-2 : If f(x) = log (x-2)(x-3) and g(x) = log(x-2) + log (x-3) then f=g Statement-3 : If f(x+2) = 2x-5 then f(x) = 2x-9.

Statement-1 : For real values of x and y the relation y^(2) = 2x - x^(1) - 1 represents y as a function of x. Statement-2 : If f(x) = log (x-2)(x-3) and g(x) = log(x-2) + log (x-3) then f=g Statement-3 : If f(x+2) = 2x-5 then f(x) = 2x-9.