Home
Class 11
MATHS
यदि f(x) = cos (log x), तो निम्नलिखित का...

यदि f(x) = cos (log x), तो निम्नलिखित का मान ज्ञात कीजिए -
`f(x) * f(y) - (1)/(2)[f{(x)/(y)} + f(xy)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=

If f(x)=cos log_e^x then f(x)*f(y)-1/2[f(xy)+f(x/y)]=

If f(x) = cos(log x) , then f((1)/(x)) f((1)/(y) - (1)/(2)[f((x)/(y)) + f(xy)] =

If f (x) = cos ( log _e x ) then f(x) . f(y) - (1)/(2) [f(y/x ) + f (xy)] has the value

If f(x)=cos(log x), " then " f(x)*f(y)-(1)/(2)[f((x)/(y))+f(xy)] has the value

If f(x) = cos(log_e x) , then find the value of f(x) cdot f(y) - 1/2[f(x/y) + f(xy)]

If f(x)=cos(ln x) then f(x)f(y)-(1)/(2)(f((x)/(y))+f(xy)) has the value

If f(x) = cos (log_(e) x) , then f(x)f(y) -1/2[f(x/y) + f(xy)] has value