Home
Class 11
MATHS
A square of side a lies above the x-axi...

A square of side `a` lies above the x-axis and has one vertex at the origin. The side passing through the origin makes an angle `alpha(0ltalphaltpi/ 4)` with the positive direction of x-axis. equation its diagonal not passing through origin is (a) `y(cosalpha+sinalpha)+x(sinalpha-cosalpha)="alpha`(b)`y(cosalpha+sinalpha)+x(sinalpha+cosalpha)=alpha`(c)`y(cosalpha+sinalpha)+x(cosalpha-sinalpha)=alpha`(d)`y(cosalpha-sinalpha)-x(sinalpha-cosalpha)=alpha`

Promotional Banner

Similar Questions

Explore conceptually related problems

A square of side a lies above the x-axis and has one vertex at the origin. The side passing through the origin makes an angle alpha(0ltalphaltpi/ 4) with the positive direction of x-axis. equation its diagonal not passing through origin is (a) y(cosalpha+sinalpha)+x(sinalpha-cosalpha)="a (b) y(cosalpha+sinalpha)+x(sinalpha+cosalpha)=a (c) y(cosalpha+sinalpha)+x(cosalpha-sinalpha)=a (d) y(cosalpha-sinalpha)-x(sinalpha-cosalpha)=a

A square of side ' a ' lies above the x-axis and has one vertex at the origin. The side passing through the origin makes an angle alpha (0ltalphaltpi/ 4) with the positive direction of x-axis. equation its diagonal not passing through origin is: a. y(cosalpha-sinalpha)-x(sinalpha-cosalpha)=a b. y(cosalpha+sinalpha)+x(sinalpha-cosalpha)=a c. y(cosalpha-sinalpha)+x(sinalpha+cosalpha)=a d. y(cosalpha+sinalpha)-x(cosalpha+sinalpha)=a

If A_(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] , then

If (2sinalpha)/(1+cosalpha+sinalpha) =x, then (1-cosalpha+sinalpha)/(1+sinalpha) =

If A=[(cas alpha, sinalpha),(-sinalpha,cosalpha)], AA'=

If (2sinalpha)/({1+cosalpha+sinalpha})=y , then ({1-cosalpha+sinalpha})/(1+sinalpha) =

If A_(alpha)=[(cosalpha,sinalpha),(-sinalpha,cosalpha)] then (A_(alpha))^2=?

If (2sinalpha)/(1+cosalpha+sinalpha)=x then find (1-cosalpha+sinalpha)/(1+sinalpha)

if tan theta=(sinalpha-cosalpha)/(sinalpha+cosalpha) show that, sin alpha+cosalpha=pmsqrt(2)cos theta