Home
Class 12
MATHS
consider f(X) =(1)/(1+|x|)+(1)/(1+|x-1|)...

consider `f(X) =(1)/(1+|x|)+(1)/(1+|x-1|)` Let `x_(1)` and `x_(2)` be point wher f(x) attains local minmum and global maximum respectively .If `k=f(x_(1))+f(x_(2))` then 6k-9=________.

Promotional Banner

Similar Questions

Explore conceptually related problems

let f(x)=(x^2-1)^n (x^2+x-1) then f(x) has local minimum at x=1 when

let f(x)=(x^(2)-1)^(n)(x^(2)+x-1) then f(x) has local minimum at x=1 when

Let f(x)={{:((2x-4), x 2):} , f(x) attains local maximum at x=2, if k lies in

Let f(x) =x^(2) , x in (-1,2) Then show that f(x) has exactly one point of local minima but global maximum Is not defined.

Let f (x) = x^(2) , x in [-1 , 2) Then show that f(x) has exactly one point of local minima but global maximum is not defined.

Consider the function f(x)=(x-1)^(2)(x+1)(x-2)^(3) What is the number of point of local minima of the function f(x)?

let ( f(x) = 1-|x| , |x| 1 ) g(x)=f(x+1)+f(x-1)

If f(x)=log((1-x)/(1+x)) ,|x|<1" and f((2x)/(1+x^(2)))=K .f(x) then 50K=