Home
Class 12
MATHS
If underset(x to 0)lim({(a-n)nx - tan x}...

If `underset(x to 0)lim({(a-n)nx - tan x} sin nx)/x^(2) = 0`, where n is non-zero real number, then a is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(x to 0) ({(a-n)nx - tan x} sin nx)/x^(2) = 0 , where n is non-zero real number, then a is equal to

If lim_(x rarr 0)(((a-n)nx-tanx)sinnx)/x^2=0 , where n is non zero real number, then a is equal to:

lim_(x rarr 0) (sin nx[(a-n)nx - tan x])/(x^(2)) = 0 , where n is non-zero positive integer, tehn a is equal to :

If (lim_(x rarr0)({(a-n)nx-tan x}sin nx)/(x^(2))=0 where n is nonzero real number,the a is 0 (b) (n+1)/(n)( c) n(d)n+(1)/(n)

lim_(x to 0)({(2-n)nx - tan x}sin nx)/(x^(2))=0 , then the natural number n is

lim_(x->0) (sin(nx)((a-n)nx – tanx))/x^2= 0, when n is a non-zero positive integer, then a is equal to

lim_(x->0) (sin(nx)((a-n)nx – tanx))/x^2= 0 , when n is a non-zero positive integer, then a is equal to

lim_(x->0) (sin(nx)((a-n)nx – tanx))/x^2= 0 , when n is a non-zero positive integer, then a is equal to

lim_(x->0) (sin(nx)((a-n)nx – tanx))/x^2= 0 , when n is a non-zero positive integer, then a is equal to