Home
Class 12
MATHS
If y=ae^(nx)+be^(-nx), then prove that y...

If `y=ae^(nx)+be^(-nx)`, then prove that `y''=n^(2)y`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = ae ^(nx) + be ^(-nx) then y _(2)=

if y=Ae^(mx)+Be^(nx) then prove that (d^(2)y)/(dx^(2))-(m+n)(dy)/(dx)+mny=0

If y=Ae^(mx)+Be^(nx) , prove that (d^(2)y)/(dx^(2)) -(m+n) (dy)/(dx) + mny=0 .

If y=Ae^(mx)+Be^(nx) then show that (d^(2)y)/(dx^(2))-(m+n)(dy)/(dx)+mny=0

If y= Ae^(mx)+Be^(nx) prove that (d^(2)y)/(dx^(2))-(m+n)(dy)/(dx)+ (mn)y=0

If y=ae^(mx)+be^(nx) , show that (d^2y)/(dx^2)-(m+n)dy/dx+mny=0

If y= Ae^(mx) +Be^(nx) , show that (d^(2)y)/(dx^(2))-(m+n)(dy)/(dx)+mny=0 .

If y= Ae^(mx) +Be^(nx) , show that (d^(2)y)/(dx^(2))-(m+n)(dy)/(dx)+mny=0 .