Home
Class 12
MATHS
The product ("cos"(x)/(2))*("cos"(x)/(4...

The product `("cos"(x)/(2))*("cos"(x)/(4))*("cos"(x)/(8))* * * * * * * * ("cos"(x)/(256))` is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

8*sin(x/8)*cos(x/2)*cos(x/4)*cos(x/8)=

The value of lim_(nrarroo)(cos.(x)/(2)cos.(x)/(4)cos.(x)/(8)………cos.(x)/(2^(n+1))) is equal to

The value of lim_(nrarroo)(cos.(x)/(2)cos.(x)/(4)cos.(x)/(8)………cos.(x)/(2^(n+1))) is equal to

8 * sin ((x) / (8)) * cos ((x) / (2)) * cos ((x) / (4)) * cos ((x) / (8)) =

8.sin(x/8). cos (x/2).cos (x/4).cos (x/8) =

Evaluate lim_(n rarr oo){cos((x)/(2))cos((x)/(4))cos((x)/(8))...cos((x)/(2^(n)))}

8sin(x/8)cos(x/2)cos(x/4)cos(x/8) is equal to

Evaluate lim_(ntooo) {cos((x)/(2))cos((x)/(4))cos((x)/(8))...cos((x)/(2^(n)))} .