Home
Class 11
MATHS
The equation of the incircle of equilate...

The equation of the incircle of equilateral triangle `A B C` where `B-=(2,0),C-=(4,0),` and `A` lies in the fourth quadrant is: (a) `x^2+y^2-6x+(2y)/(sqrt(3))+9=0` (b) `x^2+y^2-6x-(2y)/(sqrt(3))+9=0` (c) `x^2+y^2+6x+(2y)/(sqrt(3))+9=0` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation of the incircle of equilateral triangle ABC where B-=(2,0),C-=(4,0) and A lies in the fourth quadrant is x^(2)+y^(2)-6x+(2y)/(sqrt(3))+9=0x^(2)+y^(2)-6x-(2y)/(sqrt(3))+9=0x^(2)+y^(2)+6x+(2y)/(sqrt(3))+9=0 none of these

The latus rectum of the conic 3x^2+4y^2-6x+8y-5=0 is a. 3 b. (sqrt(3))/2 c. 2/(sqrt(3)) d. none of these

The equation of a circle of radius 1 touching the circles x^2 + y^2 - 2 |x| = 0 is: (A) x^2 + y^2 + 2sqrt(3x) - 2 = 0 (B) x^2 + y^2 - 2sqrt(3)y+2=0 (C) x^2 + y^2 + 2sqrt(3) y + 2 = 0 (D) x^2 + y^2 + 2 sqrt(3) x + 2 = 0

The equation of the incircle of the triangle formed by the coordinate axes and the line 4x + 3y - 6 = 0 is (A) x^(2) + y^(2) - 6x - 6y - 9 = 0 (B) 4 (x^(2) + y^(2) - x - y) + 1 = 0 (C) 4 (x^(2) + y^(2) + x + y) + 1 = 0 (D) 4 (x^(2) + y^(2) - x - y ) - 1 = 0

The equation of the circle touching Y-axis at (0,3) and making intercept of 8 units on the axis (a) x^(2)+y^(2)-10x-6y-9=0 (b) x^(2)+y^(2)-10x-6y+9=0 (c) x^(2)+y^(2)+10x-6y-9=0 (d) x^(2)+y^(2)+10x+6y+9=0

The latus rectum of the conic 3^(2)+4y^(2)-6x+8y-5=0 is 3b.(sqrt(3))/(2)c(2)/(sqrt(3))d. none of these

Find common tangent of the two curve y^(2)=4x and x^(2)+y^(2)-6x=0 (a) y=(x)/(3)+3 (b) y=((x)/(sqrt(3))-sqrt(3)) (c) y=(x)/(3)-3 (d) y=((x)/(sqrt(3))+sqrt(3))

Find common tangent of the two curve y^(2)=4x and x^(2)+y^(2)-6x=0 (a) y=(x)/(3)+3 (b) y=((x)/(sqrt(3))-sqrt(3)) (c) y=(x)/(3)-3 (d) y=((x)/(sqrt(3))+sqrt(3))

Find common tangent of the two curve y^(2)=4x and x^(2)+y^(2)-6x=0 (a) y=(x)/(3)+3 (b) y=((x)/(sqrt(3))-sqrt(3)) (c) y=(x)/(3)-3 (d) y=((x)/(sqrt(3))+sqrt(3))

The equation of a circle of radius 1 touching the circles x^2+y^2-2|x|=0 is (a) x^2+y^2+2sqrt(2)x+1=0 (b) x^2+y^2-2sqrt(3)y+2=0 (c) x^2+y^2+2sqrt(3)y+2=0 (d) x^2+y^2-2sqrt(2)+1=0