Home
Class 12
MATHS
underset( x rarr 2) ( "lim") ( sin ( e^(...

`underset( x rarr 2) ( "lim") ( sin ( e^(x-2) - 1))/( ln ( x-1))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of underset( x rarr 0 ) ( "Lim") ( sin ( ln ( 1+ x)))/( ln ( 1+ sin x )) is

underset( x rarr 1 ) ("lim") (1-x)/( 1-x^(2))=

Find underset( x rarr 0 ) ( "Lim") ( e^(sin x) -sin x -1)/( x^(2))

Evaluate : underset( x rarr0 ) ("lim") ( sqrt( ( 1+sin 3x))-1)/(ln ( 1+ tan 2x))

Evaluate underset( x rarr0 ) ( "Lim")( e^(x) - e^(-x)-2x)/( x - sin x )

underset( x rarr 1 ) ( "Lim") ( x^(2) - x. ln x + ln x - 1)/( x - 1)

Find underset( x rarr 0 ) ( "Lim") ( e^(sinx) -sin x -1)/( x^(2))

Evaluate underset( x rarr oo) ( "Lim") x - x^(2) ln ( 1+ ( 1)/( x))

Evaluate underset( x rarr oo) ( "lim") ( pi - 2 tan^(-1) x ) ln x

lim_ (x rarr2) (tan (e ^ (x-2) -1)) / (ln (x-1))