Home
Class 12
MATHS
If the function f(x)=a x^3+b x^2+11 x-6 ...

If the function `f(x)=a x^3+b x^2+11 x-6` satisfies conditions of Rolles theorem in `[1,3] and f'(2+1/(sqrt(3)))=0,` then values of `a and b`, respectively, are
(A) `-3,2`
(B) `2,-4`
(C) `1,-6`
(D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f(x) = ax^3 + b x^2+11x - 6 satisfies conditions of Rolle's theorem in [1, 3] and f’(2+ (frac{1}{sqrt 3})) = 0, then values of a and b are respectively

If the function f(x)=ax^(3)+bx^(2)+11x-6 satisfies conditions of Rolles theorem in [1,3] for x=2+(1)/(sqrt(3)), then values of a and b respectively,are -3,2(b)2,-41,6(d) none of these

If the function f(x)=ax^(3)+bx^(2)+11x-6 satisfies condition of Rolle's theorem in [1, 3] for x=2+(1)/(sqrt(3)) then value of a and b are respectively (A) 1, -6 (B) 2, -4 (C) 1, 6 (D) None of these.

In the function f(x)= 2x^(3) + bx^(2) + qx satisfies conditions of Rolle's theorem in [-1, 1] and c= (1)/(2) then the value of 2b + q is…….

If f(x)=x^(3)+bx^(2)+ax satisfies the conditions on Rolle's theorem on [1,3] with c=2+(1)/(sqrt(3))

If the function f(x)=x^3-6x^(2)+ax+b satisfies Rolle's theorem in the interval [1,3] and f'((2sqrt(3)+1)/(sqrt(3)))=0 , then

If f(x) = x^(3) + bx^(2) +ax satisfies the conditions of Rolle's theorem on [1,3] with c = 2+(1)/(sqrt(3)) then (a,b) =0