Home
Class 12
MATHS
The coefficient of x^50 in the polynomia...

The coefficient of `x^50` in the polynomial `(x + ^50C_0)(x +3.^5C_1) (x +5.^5C_2).....(x + (2n + 1) ^5C_50)`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the coefficient of x^n in the polynomial (x+^n C_0)(x+3^n C_1)xx(x+5^n C_2)[x+(2n+1)^n C_n]dot

Find the coefficient of x^n in the polynomial (x+^n C_0)(x+3^n C_1)xx(x+5^n C_2)[x+(2n+1)^n C_n]dot

Find the coefficient of x^n in the polynomial (x+^n C_0)(x+3^n C_1)xx(x+5^n C_2)[x+(2n+1)^n C_n]dot

Find the coefficient of x^(n) in the polynomial (x+^(n)C_(0))(x+3^(n)C_(1))xx(x+5^(n)C_(2))...[x+(2n+1)^(n)C_(n)]

Find the coefficient of x^49 in the polynomial (x-C_1/C_2)(x-2^2*C-2/C_1)(x-3^2*C_3/c_2)............(x-50^2*c_50/C-49) , where C_r=50C_r .

The coefficient of ^(49) in the polynomial (x-(C_1)/(C_0)) (x-2^2(C_2)/(C_1)) (x-3^2(C_3)/(C_2)) ...(x-50^2(C_50)/(C_49)) is

If C_(0),C_(1), C_(2),...,C_(n) denote the cefficients in the expansion of (1 + x)^(n) , then C_(0) + 3 .C_(1) + 5 . C_(2)+ ...+ (2n + 1) C_(n) = .

If C_(0),C_(1), C_(2),...,C_(n) denote the cefficients in the expansion of (1 + x)^(n) , then C_(0) + 3 .C_(1) + 5 . C_(2)+ ...+ (2n + 1) C_(n) = .

The coefficient of x^(n) in the polynomial (x+""^(2n+1)C_(0))(X+""^(2n+1)C_(1)) (x+""^(2n+1)C_(2))……(X+""^(2n+1)C_(n)) is

The coefficient of x^(n) in the polynomial (x+""^(2n+1)C_(0))(X+""^(2n+1)C_(1)) (x+""^(2n+1)C_(2))……(X+""^(2n+1)C_(n)) is