Home
Class 12
MATHS
If x= theta - 1 / theta and y= theta + 1...

If `x= theta - 1 / theta` and `y= theta + 1 / theta`, then `dy / dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = theta -(1)/(theta) , y = theta + (1)/(theta) then (dy)/(dx) =

If x=theta-(1)/(theta)" and "y=theta+(1)/(theta)," then: "(d^(2)y)/(dx^(2))=

If x = 2(theta + sin theta) and y = 2(1 - cos theta) , then value of (dy)/(dx) is

If x = 2(theta + sin theta) and y = 2(1 - cos theta) , then value of (dy)/(dx) is

If x = a (theta +sin theta) and y = a (1 - cos theta), "find" (dy)/(dx).

If x = a (sin theta - theta cos theta) and y = a (cos theta + theta sin theta) find dy/dx at theta = pi/4

If x=a ( theta -sin theta ) ,y=a(1-cos theta ) ,then (dy)/(dx) =