Home
Class 12
MATHS
If x=sin^(-1) t, y=log(1-t^(2)), 0 le t ...

If `x=sin^(-1) t, y=log(1-t^(2)), 0 le t lt 1`, then the value of `(d^(2)y)/(dx^(2))` at `t=(1)/(3)` is -

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin x=(2t)/(1+t^(2)) and cot y=(1-t^(2))/(2t) then the value of (d^(2)x)/(dy^(2))=

If t is a parameter and x=t^(2)+2t, y=t^(3)-3t , then the value of (d^(2)y)/(dx^(2)) at t=1 is -

If x=log(1+t^(2)),y=2t-2tan^(-1)t, then at t = 1(d^(2)y)/(dx^(2)) equals-

If x=a(sin t-t cos t),y=a sin t then find the value of (d^(2)y)/(dx^(2))

If x=a(cos t+(log tan t)/(2)),y=a sin t evaluate (d^(2)y)/(dx^(2)) at t=(pi)/(3)