Home
Class 11
MATHS
Let f(x)=(tan^n x)/(sum(r=0)^(2n)tan^r x...

Let `f(x)=(tan^n x)/(sum_(r=0)^(2n)tan^r x),ll in N,` where `x in [0,pi/2]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

If (1+2 x+x^(2))^(n)=sum_(r=0)^(2 n) a_(r) x^(r) , then a_(r) =

Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. The value of sum_(r=0)^(n-1) a_(r) is

Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. The value of sum_(r=0)^(n-1) a_(r) is

Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. The value of sum_(r=0)^(n-1) a_(r) is

Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. If n is odd , the value of sum_(r-1)^(2) a_(2r -1) is

Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. If n is odd , the value of sum_(r-1)^(2) a_(2r -1) is