Home
Class 12
MATHS
"If "x=3cost-2cos^(3)t,y=3sint-2sin^(3)t...

`"If "x=3cost-2cos^(3)t,y=3sint-2sin^(3)t," show that"(dy)/(dx)=cott.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=3cost-2cos^(3)t,y=3sint-2sin^(3)t then find dy/dx .

If x =3 cos t-2cos ^(3) t,y =3 sin t- 2 sin ^(3) t,then (dy)/(dx) =

If x = 3 cos t - 2 cos^3 t and y = 3 sin t - 2 sin^3 t , show that dy/dx = cott

Find dy/dx, x=3 cos t-2cos^3t , y=3sint-2sin^3t .

If x = 3 cos t - 2 cos^3 t,y = 3 sin t- 2 sin^3 t, then dy/dx is

If x = 2 cos^4(t+3), y = 3 sin^4(t+3) , show that (dy)/(dx) = - sqrt((3y)/(2x))

If x=2cost-cos2t,y=2sint-sin2t," then "(dy)/(dx)=

If x=a(2cost+cos2t),y=a(2sint+sin2t)," then "(dy)/(dx)=

If x=2cost-cos2t , y=2sint-sin2t ,then at t=(pi)/(4) , (dy)/(dx)=