Home
Class 8
MATHS
sqrt(4)=2. b e c a u s e\ 2^2=4. sqrt(...

`sqrt(4)=2. b e c a u s e\ 2^2=4.` `sqrt(9)=3,\ b e c a u s e\ 3^2=9.` `sqrt(324)=18 ,\ b e c a u s e\ 18^2=324.`

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(4)=2. because 2^(2)=4sqrt(9)=3, because 3^(2)=9sqrt(324)=18, because 18^(2)=324

Two poles are a metres apart and the height of one is double of the other. If from the middle point of the line joining their feet an observer finds the angular elevations of their tops to be complementary, then the height of the smaller is (a) sqrt(2)am e t r e s (b) a/(2sqrt(2))m e t r e s (c) a/(sqrt(2))m e t r e s (d) 2am e t r e s

In A B C ,A=(2pi)/3,b-c=3sqrt(3)c m and area of A B C=(9sqrt(3))/2c m^2,t h e n (a) 9c m (b) 18 c m (c) 27 c m

Given b=2,c=sqrt(3),/_A=30^0 , then inradius of A B C is (sqrt(3)-1)/2 (b) (sqrt(3)+1)/2 (c) (sqrt(3)-1)/4 (d) non eoft h e s e

Given b=2,c=sqrt(3),/_A=30^0 , then inradius of A B C is (sqrt(3)-1)/2 (b) (sqrt(3)+1)/2 (c) (sqrt(3)-1)/4 (d) non eoft h e s e

Given b=2,c=sqrt(3),/_A=30^0 , then inradius of A B C is (sqrt(3)-1)/2 (b) (sqrt(3)+1)/2 (c) (sqrt(3)-1)/4 (d) non eoft h e s e

Prove the following identity: (s e c A\ s e c B+t a n AtanB)^2-(s e c A\ t a n B+t a n A s e c B)^2=1

Find the principal values of " (1) c o s e c"^(-1)(2) and "c o s e c"^(-1)(-2/(sqrt(3)))

How many 3\ m e t r e\ c u b e s can be cut from a cuboid measuring 18 m\ x\ 12 m\ x\ 9m ?

How many 3\ m e t r e\ c u b e s can be cut from a cuboid measuring 18 m\ x\ 12 m\ x\ 9m ?