Home
Class 11
MATHS
If (1+a)(1+a^(2))(1+a^(4)) . . . . (1+a^...

If `(1+a)(1+a^(2))(1+a^(4)) . . . . (1+a^(128))=sum_(r=0)^(n) a^(r )`, then n is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+a)(1+a^(2))(1+a^(4)) . . . . (1+a^(128))=underset(r=0)overset(n)suma^(r ) , then n is equal to

If (1+x)(1+x^2)(1+x^4)….(1+x^(128))=Sigma_(r=0)^(n) x^r , then n is equal is

If (1+x)(1+x^2)(1+x^4)….(1+x^(128))=Sigma_(r=0)^(n) x^r , then n is equal is

sum_(r=1)^(n) 1/(log_(2^(r))4) is equal to

sum_(r=1)^(n) 1/(log_(2^(r))4) is equal to

If (1+x)(1+x^2)(1+x^4)....(1+x^128)=sum_(r=0)^nx^r then n is

sum_(r=1)^(n)(C(n,r))/(r+2) is equal to

(sum_(r=1)^(n)r^(4))/(sum_(r=1)^(n)r^(2)) is equal to

(sum_(r=1)^n r^4)/(sum_(r=1)^n r^2) is equal to

What is sum_(r=0)^(1) ""^(n+r)C_(n) equal to ?