Home
Class 12
MATHS
If T0, T1, T2, … Tn represent the terms ...

If `T_0, T_1, T_2, … T_n` represent the terms in the expansion of `(x+a)^n`, then the value of `(T_0-T_2+T_4-T_6+…)^2+(T_1-T_3 +T_5-….)^2` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If T_0,T_1, T_2, ,T_n represent the terms in the expansion of (x+a)^n , then find the value of (T_0-T_2+T_4-)^2+(T_1-T_3+T_5-)^2n in Ndot

If T_0,T_1, T_2, ,T_n represent the terms in the expansion of (x+a)^n , then find the value of (T_0-T_2+T_4-)^2+(T_1-T_3+T_5-)^2n in Ndot

If T_0,T_1, T_2,.....T_n represent the terms in the expansion of (x+a)^n , then find the value of (T_0-T_2+T_4-....)^2+(T_1-T_3+T_5-.....)^2n in Ndot

If T_(0),T_(1),T_(2),...,T_(n) represent the terms in the expansion of (x+a)^(n), then find the value of (T_(0)-T_(2)+T_(4)-...)^(2)+(T_(1)-T_(3)+T_(5)-...)^(2)n in N

If t_0,t_1, t_2,...,t_n are the terms in the expansion of (x+a)^n then prove that (t_0-t_2+t_4-...)^2+(t_1-t_3+t_5-...)^2=(x^2+a^2)^n .

For x = 5/7 , If t_k is the first negative term in the expansion of (1+x)^(7//5) , then t_1, + t_2, + …..t_k =