Home
Class 12
MATHS
The values of constants a so that unde...

The values of constants a so that `underset(x to oo)lim ((x^(2)+1)/(x+1)-ax-b)=0` are

Promotional Banner

Similar Questions

Explore conceptually related problems

If underset(xtooo)lim((x^(2)+x+1)/(x+1)-ax-b)=4, then

If underset(xtooo)lim((x^(2)+x+1)/(x+1)-ax-b)=4, then

underset(x to oo)lim (|3x^(2)+1|)/(2x^(2)+1)=

Find underset(x to oo)lim (1+1/x^2)^x

underset(x to oo)lim (3x^(2)+5x+2)/(2x^(2)-3x+1)=

The value of constants a and b, so that : lim_(x rarr oo) [(x^(2) + 1)/(x+1) - ax - b] = 0 , is :

underset(x to oo)lim {sqrt(x^(2)+ax+b)-x} =

If underset(x to oo)lim (sqrt(x^(2)-ax)-x)=1/2" then a="

underset(x to oo)lim ((x^(3))/(3x^(2)-1)-(x^(2))/(3x+1))=