Home
Class 11
MATHS
If f(x)=(x-|x|)/(|x|), then f(-1)=...

If `f(x)=(x-|x|)/(|x|),` then `f(-1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

For xne0 ,f(x) = (x-|x|)/(|x|) then f(-1)=0

If f(x)=(x-|x|)/(|x|) , then find f(-1).

If f(x)=(x-|x|)/(|x|) , then value of f(-1) is

If f(x)=-(x|x|)/(1+x^(2))" then "f^(-1)x equals :

If f:R rarr(-1,1) is defined by f(x)=-(x|x|)/(1+x^(2)), then f^(-1)(x) equals sqrt((|x|)/(1-|x|)(b)-sgn(x)sqrt((|x|)/(1-|x|))-sqrt((x)/(1-x))(d)) none of these

If f(x)=(x-1)/(x+1);x!=-1 , then f^(-1)(x) is:

Let f(x)=(x)/(x+3) , then f(x+1)=?

If f(x)=(|x-1|)/(x-1),x!=1 and f(1)=1 then the correct statement is discontinuous at x=1