Home
Class 12
MATHS
If the matrices, A, B and (A+B) are non-...

If the matrices, A, B and `(A+B)` are non-singular, then prove that `[A(A+B)^(-1) B]^(-1) =B^(-1)+A^(-1)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If the matrices, A ,B ,(A+B) are non-singular, then prove that [A(A+B)^(-1)B]^(-1)=B^(-1)+A^(-1) .

If the matrices, A ,B ,(A+B) are non-singular, then prove that [A(A+B)^(-1)B]^(-1)=B^(-1)+A^(-1) .

If the matrices A, B (A + B) are non - singular, then [A(A+B)^(-1) B]^(-1) . a) A^(-1)B^(-1) b) B^(-1)+A^(-1) c) B^(-1)A^(-1) d)None of these

If A and B are non-singular matrices, then

Statement 1: If the matrices,A,B,(A+B) are non-singular,then [A(A+B)^(-1)B]^(-1)=B^(-1)+A^(-1). Statement 2:[A(A+B)^(-1)B]^(-1)=[A(A^(-1)+B^(-1))B]^(-1)=[(I+AB^(-1))B]^(-1)=[(B+AB^(-1))B]^(-1)=[(B+AI)]^(-1)=[(B+A)]^(-1)=B^(-1)+A^(-1)

if A and B are non-singular matrices ,then

If A and B be two non singular matrices and A^(-1) and B^(-1) are their respective inverse, then prove that (AB)^(-1)=B^(-1)A^(-1)

If A and B are non-singular matrices such that B^(-1)AB=A^(3), then B^(-3)AB^(3)=

If the two matrices A,B,(A+B) are non-singular (where A and B are of the same order),then (A(A+B)^(-1)B)^(-1) is equal to (A)A+B(B)A^(-1)+B^(-1)(C)(A+B)^(-1)(D)AB