Home
Class 12
MATHS
If a, b, c, x, y, z are real and a^(2)...

If a, b, c, x, y, z are real and `a^(2)+b^(2) + c^(2)=25, x^(2)+y^(2)+z^(2)=36 and ax+by+cz=30`, then `(a+b+c)/(x+y+z)` is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(2)+b^(2)+c^(2)=16,x^(2)+y^(2)+z^(2)=25 and ax+by+cz=20 then the value of (a+b+c)/(x+y+z)

If a^(2)+b^(2)+c^(2)=x^(2)+y^(2)+z^(2)=1, then show that ax+by+cz<1

If (a^(2)+b^(2)+c^(2))(x^(2)+y^(2)+z^(2))=(ax+by+cz)^(2), then show that x:a=y:b=z:c

If a^x = b^y = c^z and b/a = c/b then (2z)/(x + z) is equal to:

If x : a = y : b = z : c , then prove that (a^(2) + b^(2) + c^(2))(x^(2) + y^(2) + z^(2)) = (ax + by + cz)^(2)

If a^2+b^2+c^2 =16, x^2+y^2+z^2 = 25 and ax+by+cz = 20 , then show that (a+b+c) prop (x+y+z)

If a, b, c, x, y and z be real numbers and x^(2)+y^(2)+z^(2)=16 , a^(2)+b^(2)+c^(2)=9 and ax+by+cz=12 ; the value of ((a^(3)+b^(3)+c^(3))^((1)/(3)))/((x^(3)+y^(3)+z^(3))^((1)/(3))) is

If a, b, c, x, y and z be real numbers and x^(2)+y^(2)+z^(2)=16 ; a^(2)+b^(2)+c^(2)=9 ; ax+by+cz=12 ; the value of ((a^(3)+b^(3)+c^(3))^((1)/(3)))/((x^(3)+y^(3)+z^(3))^((1)/(3))) is