Home
Class 12
MATHS
intcos(logx)dx is equal to (A) ...

`intcos(logx)dx` is equal to (A) `x/2(cos(logx)-sin(logx))+c` (B) `x(cos(logx)+sin(logx))+c` (C) `x/2(cos(logx)+sin(logx)+c` (D) `x(cos(logx)-sin(logx))+c`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

cos(2logx)

int cos(logx)dx=?

int(cos(logx))/(x)dx

(logx)/(x)

int(logx)/(x)dx=?

f(x)=cos(logx) , then

y=x^(logx)+(logx)^(x)

int _(1)^(3) (cos (logx))/(x) dx is equal to

∫[sin(logx)+cos(logx)]dx