Home
Class 11
MATHS
int(0tooo) log(1+x^2)/(1+x^2) dx equals-...

`int_(0tooo) log(1+x^2)/(1+x^2) dx` equals-(A) log2(B) -a log2(C) 1/2 log2(D) -A/2 log2

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(log(1/2))^(log2) log(x+sqrt(x^2+1))dx= (A) 2log2 (B) 1-log2 (C) 1+log2 (D) 0

The value of int_0^1(8 log(1+x))/(1+x^(2)) dx is a) πlog2 b) π/8log2 c) π/2log2 d) log2

The value of int_(0)^(1)(8log(1+x))/(1+x^(2))dx is: (1)pi log2 (2) (pi)/(8)log2(3)(pi)/(2)log2(4)log2

int _(0) ^(pi//2) (cos x )/( 1 + sin x ) dx equals to a) log 2 b) 2 log 2 c) (log2) ^(2) d) 1/2 log 2

int_0^oo logx/(1+x^2)dx= (A) log2 (B) pi/2 (C) 0 (D) none of these

The value of int_0^1(8log(1+x))/(1+x^2)dx is a. pilog2 b. \ pi/8log2 c. \ pi/2log2 d. log2

int_0^oo1/(1+e^x)dx equals a. log2-1 b. log2 c. log4-1 d. log2

int_0^oo1/(1+e^x)dx equals log2-1 b. log2 c. log4-1 d. log2

G i v e nint_0^(pi/2)(dx)/(1+sinx+cosx)=log2. Then the value of integral int_0^(pi/2)(sinx)/(1+sinx+cosx)dx is equal to (a) 1/2log2 (b) pi/2-log2 (c) pi/4-1/2log2 (d) pi/2+log2