Home
Class 9
MATHS
The square root of (3a + 2b + 3c)^(2) - ...

The square root of `(3a + 2b + 3c)^(2) - (2a + 3b + 2c)^(2) + 5b^(2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

a - [2b - {3a - (2b - 3c)}]

Add : 3a ( 2b + 5c), 3c (2a + 2b)

Simplify : (a - 2b + c)^3 - (a - 2b)^3 - 3c ( a - 2b +c)(a - 2b)

If a,b and c are the roots of x^(3) +qx+r=0 , then (a-b)^(2) +(b-c)^(2) +(c-a)^(2) =

Simplify (a + b) (2a – 3b + c) – (2a – 3b) c.

2a - 3b - [3a - 2b - {a - c- (a - 2b)}]

Simplify : ( 2a - 3b + 3c ) ( 4a + 2b - c )

If a ,\ b ,\ c are positive real numbers, then root(5)(3125\ a^(10)b^5c^(10)) is equal to (a)\ 5a^2b c^2 (b) 25 a b^2c (c) 5a^3b c^3 (d) 125\ a^2b c^2

If a^(2)+b^(2)+c^(2)=1 where, a,b, cin R , then the maximum value of (4a-3b)^(2) + (5b-4c)^(2)+(3c-5a)^(2) is

If a^(2)+b^(2)+c^(2)=1 where, a,b, cin R , then the maximum value of (4a-3b)^(2) + (5b-4c)^(2)+(3c-5a)^(2) is