Home
Class 12
MATHS
If x=log4((2f(x))/(1-f(x))) then the val...

If `x=log_4((2f(x))/(1-f(x)))` then the value of `f(2018)+f(-2017)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=xe^(-x^(2)tan^(2)x)+e^(x)-e^(-x), then the value of f(2018)+f(-2018) is equal to

If log_(4)((2f(x))/(1-f(x)))=x, " then "(f(2010)+f(-2009)) is equal to

If log_(4)((2f(x))/(1-f(x)))=x, " then "(f(2010)+f(-2009)) is equal to

If log_(4)((2f(x))/(1-f(x)))=x, " then "(f(2010)+f(-2009)) is equal to

IF f(x)=log(3x+1), then the value of f'' (1) is-

If f(x)=log(cosx), then the value of f''(x) is-

If f(x)=|x-1|+|x-3| ,then value of f'(2) is equal to

For x in R , the functions f(x) satisfies 2f(x)+f(1-x)=x^(2) . The value of f(4) is equal to