Home
Class 12
MATHS
If x = cos theta and y = sin^(3) theta, ...

If `x = cos theta and y = sin^(3) theta,` then `|(yd ^(2)y)/(dx ^(2))+((dy)/(dx))^(2)|at theta=(pi)/(2)` is:

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = sin theta, y = sin^(3) theta then (d^(2)y)/(dx^(2)) at theta = (pi)/(2) is …….

If x=cos theta,y=sin5 theta then (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=

If x=cos theta,y sin^(3)theta, prove that y(d^(2)y)/(dx^(2))+((dy)/(dx))^(2)=3sin^(2)theta(5cos^(2)theta-1)

If x =a cos ^(3) theta, y= a sin ^(3) theta then (d^(2) y)/( dx ^(2)) at theta = pi //4 is

If x=cos theta,y=s in^(3)theta, prove that y(d^(2)y)/(dx^(2))+((dy)/(dx))^(2)=3s in^(2)theta(5cos^(2)theta-1)

x = cos theta, y = sin 5 theta implies (1- x ^(2)) (d^(2)y)/(dx ^(2)) -x (dy)/(dx) =

If x=2 cos theta-cos 2 theta and y=2 sin theta-sin 2 theta , then the value of (d^(2)y)/(dx^(2)) at theta=(pi)/(2) is -

If x =2 cos theta - cos 2 theta y = 2 sin theta - sin 2 theta Find (d^(2)y)/(dx^(2)) at theta = pi/2

if x =2 cos theta - cos 2 theta y = 2 sin theta - sin 2 theta Find (d^(2)y)/(dx^(2)) at theta = pi/2