Home
Class 12
MATHS
Let f:R rarr [0, (pi)/(2)) be a function...

Let `f:R rarr [0, (pi)/(2))` be a function defined by `f(x)=tan^(-1)(x^(2)+x+a)`. If f is onto, then a is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R rarr R be a function is defined by f(x)=x^(2)-(x^(2))/(1+x^(2)), then

Let f:R rarr R be a function defined as f(x)=(x^(2)-6)/(x^(2)+2) , then f is

Let f:R rarr R be a function defined as f(x)=(x^(2)-6)/(x^(2)+2) , then f is

Let f : R to [0, pi/2) be defined by f ( x) = tan^(-1) ( 3x^(2) + 6x + a)". If " f(x) is an onto function . then the value of a si

Let f : R to [0, pi/2) be defined by f ( x) = tan^(-1) ( 3x^(2) + 6x + a)". If " f(x) is an onto function . then the value of a is

Let f : R to [0, pi/2) be defined by f ( x) = tan^(-1) ( 3x^(2) + 6x + a)". If " f(x) is an onto function . then the value of a si

Let f:R rarr[0,(pi)/(2)) be defined by f(x)=tan^(-1)(x^(2)+x+a)* Then the set of values of a for which f is onto is (a)(0,oo)(b)[2,1](c)[(1)/(4),oo](d) none of these

Let f:R to R be a function defined by f(x)=(x^(2)-8)/(x^(2)+2) . Then f is

Let f:R to R be a function defined by f(x)=(x^(2)-8)/(x^(2)+2) . Then f is

Let f:(-1,1)rarr B be a function defined by f(x)=tan^(-1)((2x)/(1-x^(2))). Then f is both one- one and onto when B is the interval