Home
Class 12
MATHS
If f(x+y)=f(x)f(y)AA x,y in R and f(a)...

If `f(x+y)=f(x)f(y)AA x,y in R` and `f(a)=2` then area enclosed by `3|x|+2|y|le8` is:

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x+y)=f(x)f(y),forall x,y,inR and f(1)=2, then area enclosed by 3|x|+2|y|le8 is

If f(x+y) = f(x).f(y) for all x and y. f(1)=2 , then area enclosed by 3|x|+2|y|le 8 is

Let f(x+y)+f(x-y)=2f(x)f(y)AA x,y in R and f(0)=k, then

If f(x+y)=f(x)f(y) for all x and y if f(1)=2, then area enclosed by 3absx+2absyle8 is

Let f(x+y)+f(x-y)=2f(x)f(y) AA x,y in R and f(0)=k , then

If f(x + y) = f(x) f(y) AA x, y and f(5) = 2, f'(0) = 3 then f'(5) =

f((x)/(y))=f(x)-f(y)AA x,y in R^(+) and f(1)=1, then show that f(x)=In x

If f(x+y) = f(x) + f(y) + |x|y+xy^(2),AA x, y in R and f'(0) = 0 , then

If f(x+y) = f(x) + f(y) + |x|y+xy^(2),AA x, y in R and f'(0) = 0 , then

If f(x+y) = f(x) + f(y) + |x|y+xy^(2),AA x, y in R and f'(0) = 0 , then