Home
Class 12
MATHS
If vec axx vec b= vec axx vec c , vec a...

If ` vec axx vec b= vec axx vec c , vec a!= vec0a n d vec b!= vec c` , show that ` vec b= vec c+t vec a` for some scalar `tdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec axx vec b= vec cxx vec da n d vec axx vec c= vec bxx vec d , then show that vec a- vec d , is paralelto vec b- vec c

If vec axx vec b= vec cxx vec da n d vec axx vec c= vec bxx vec d , then show that vec a- vec d , is parallel to vec b- vec c

If vec axx vec b= vec cxx vec da n d vec axx vec c= vec bxx vec d , then show that vec a- vec d , is parallel to vec b- vec c provided vec a!= harr d and vec b!= vec c dot

If vec axx vec b= vec cxxvec d and vec axx vec c= vec bxxvec d , show that vec a- vec d is parallel to vec b- vec c where vec a != vec d , vec b != vec c .

If vec adot vec b= vec adot vec c\ a n d\ vec axx vec b= vec axx vec c ,\ vec a!=0, then

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n (a) vec a . vec b+ vec b . vec c+ vec c . vec a=0 (b) vec axx vec b= vec bxx vec c= vec cxx vec a (c) vec adot vec b= vec bdot vec c= vec c dot vec a (d) vec axx vec b+ vec bxx vec c+ vec cxx vec a=0

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n (a) vec adot vec b+ vec bdot vec c+ vec c dot vec a=0 (b) vec axx vec b= vec bxx vec c= vec cxx vec a (c). vec adot vec b= vec bdot vec c= vec c dot vec a (d). vec axx vec b+ vec bxx vec c+ vec cxx vec a=0

If vec a , vec b ,a n d vec c are three vectors such that vec axx vec b= vec c , vec bxx vec c= vec a , vec cxx vec a= vec b , then prove that | vec a|=| vec b|=| vec c|dot

Value of [ vec axx vec b , vec axx vec c , vec d] is always equal to a. ( vec adot vec d)[ vec a vec b vec c] b. ( vec adot vec c)[ vec a vec b vec d] c. ( vec adot vec b)[ vec a vec b vec d] d. none of these

If vec adot vec b= vec adot vec c\ a n d\ vec axx vec b= vec axx vec c ,\ vec a!=0, then vec b= vec c b. vec b=0 c. vec b+ vec c=0 d. none of these