Home
Class 11
MATHS
If a ,b ,c in R^+ , then the minimum v...

If `a ,b ,c in R^+` , then the minimum value of `a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)` is equal to (a)`a b c` (b)`2a b c` (c)`3a b c` (d)`6a b c`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c in R^(+), then the minimum value of a(b^(2)+c^(2))+b(c^(2)+a^(2))+c(a^(2)+b^(2)) is equal to (a)abc (b)2abc (c)3abc (d)6abc

If a , b and c are the side of a triangle, then the minimum value of (2a)/(b+c-a)+(2b)/(c+a-b)+(2c)/(a+b-c)i s (a) 3 (b) 9 (c) 6 (d) 1

If a , ba n dc are the side of a triangle, then the minimum value of (2a)/(b+c-a)+(2b)/(c+a-b)+(2c)/(a+b-c)i s (a) 3 (b) 9 (c) 6 (d) 1

If a , ba n dc are the side of a triangle, then the minimum value of (2a)/(b+c-a)+(2b)/(c+a-b)+(2c)/(a+b-c)i s (a) 3 (b) 9 (c) 6 (d) 1

If positive numbers a, b, c are in H.P, then minimum value of (a+b)/(2a-b)+(c+b)/(2c-b) is

If a,b and c are the side of a triangle,then the minimum value of (2a)/(b+c-a)+(2b)/(c+a-b)+(2c)/(a+b-c) is 3 (b) 9(c)6(d)1

If a b+b c+c a=0 , then what is the value of (1/(a^2-b c)+1/(b^2-c a)+1/(c^2-a b)) ? (a) 0 (b) 1 (c) 3 (d) a+b+c

If a+b=2c, then the value of (a)/(a-c)+(b)/(b-c) is (1)/(2)(b)1(c)2(d)3

If a ,\ b ,\ &\ c are non zero real numbers, then |b^2c^2bcb+c c^2a^2cac+a a^2b^2aba+b| is equal to a. a^2b^2c^2(a+b+c) b. a b c(a+b+c)^2 c. zero d. none of these