Home
Class 12
MATHS
(x-y)(1-(dy)/(dx))=e^(y), where x-y=u A...

`(x-y)(1-(dy)/(dx))=e^(y),` where `x-y=u` A)`ue^u-e^u=e^(x)+c` B)`u^(2)=e^(x)+c` C)`u^(2)=(1)/(2)e^(x)+c` D)`u^(2)e^(x)=2x+c`

Promotional Banner

Similar Questions

Explore conceptually related problems

xe^(-y)dx+ydy=0 A) 2x^(2)+(y-1)e^(y)=c B) (x^(2))/(2)+(y-1)e^(y)=c C) (y^(2))/(2)+(x-1)e^(x)=c D) 2y^(2)+(x-1)e^(x)=0

(dy)/(dx)=3x-2y+5, where 3x-2y+5=u A) 6x-4y+10=ce^(2x) B) -6x+4y-7=c.e^(-2x) C) logu=2x+c D) logu=2u+c

The general solution of the differential equation (dy)/(dx) = e^(y) (e^(x) + e^(-x) + 2x) is a) e^(-y) = e^(x) - e^(-x) + x^(2) + C b) e^(-y) = e^(-x) - e^(x) - x^(2) + C c) e^(-y) = -e^(-x) - e^(x) - x^(2) + C d) e^(y) = e^(-x) + e^(x) + x^(2) + C

If inte^(x)sinxdx=(u)/(2)e^(x)+c , then u=

If inte^(x)sinxdx=(u)/(2)e^(x)+c , then u=

if int e^(2x)sin x cos xdx=(u)/(8)e^(2x)+c then u

The solution of the differential equation (dy)/(dx) = (3e^(2x) + 3e^(4x) )/( e^(x) + e^(-x) ) is a) y= e^(3x) + C b) y=2e^(2x) + C c) y= e^(x) + C d) y= e^(4x) + C

x(logx-logy)dy-ydx=0, where logx-logy=u A) cx=log(x/y) B) log.(x)/(y)=log(log.(x)/(y))-(x)/(y)=x+c C) e^((x)/(y))+e^((x)/(y)-1)=e^(x)+c D) u=c(logu-1)

e^(dy//dx)=1 A) y=x+c B) y=e^(x)+c C) y=c D) y=cx+d

If int_(log2)^(x) (du)/((e^(u)-1)^(1/2)) = pi/6 , then e^(x) =