Home
Class 12
MATHS
int(1-7cos^(2)x)/(sin^(7)xcos^(2)x)dx=(f...

`int(1-7cos^(2)x)/(sin^(7)xcos^(2)x)dx=(f(x))/((sinx)^(7))+C`, then f(x) is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/(sin^(2)x.cos^(2)x)dx=

Suppose int(1-7cos^(2)x)/(sin^(7)x cos^(2)x)dx=(g(x))/(sin^(7)x)+c where C is arbitrary constant of ^(7)x integration.then find value of g'(0)+g''((pi)/(4))

int(sin^(2)6x-cos^(2)7x)dx=

int((7)/(cos^(2)x)-(3)/(sin^(2)x))dx

int(cos^7x)/(sinx)dx=

int(5cos^3x+7sin^3x)/(sin^2xcos^2x)dx

int(cos x)/(sin^(7)x)dx

int(5cos^3x+7sin^3x)/(3sin^2xcos^2x)dx

int(5cos^3x+7sin^3x)/(3sin^2xcos^2x)dx

Suppose int(1-7cos^2x)/(sin^7xcos^2x)dx=(g(x))/(sin^7x)+c where C is arbitrary constant of integration.then find value of g'(0)+g''(pi/4)