Home
Class 12
MATHS
Let [x] denote the greatest integer le...

Let `[x]` denote the greatest integer `leq x`. The domain of definition of function `f(x)=sqrt((4-x^2)/([x]+2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let [x] denote the greatest integer <=x. The domain of definition of function f(x)=sqrt((4-x^(2))/([x]+2)) is

If [x] denotes the greatest integer lt x then the domain of the function function f(x) =sqrt((4-x^2)/([x]+2)) is

If [x] denotes the greatest integer function, then the domain of the function f(x)=sqrt((x-[x])/(log (x^(2)-x))) is

If [x] denotes the greatest integer le x , then domain of f(x) = 1/sqrt([x]^(2) -7[x] + 12) is

If [.] denotes the greatest integer function then the domain of the real-valued function log[x+(1)/(2)]|x^(2)-x-2| is