Home
Class 12
MATHS
d/(dx)[3(sin^2x+cos^2x)]=...

`d/(dx)[3(sin^2x+cos^2x)]=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (d)/(dx)[(sin2x+1/(cos^2x)]

(d)/(dx)(sin^(2)x+cos^(2)x) =

(d)/(dx)[cos^(2)x(3-4cos^(2)x)^(2)]+(d)/(dx)[sin^(2)(3-4sin^(2)x)^(2)]=

Differentiate the following w. r. t. x : e^(3sin ^ 2 x- 2 cos^2 x)

Differentiate the following w.r.t. x: e^(3 sin^2 x-2 cos^2 x)

d/(dx) [sin (2x + 3)] =

d/(dx) [sin (2x + 3)] =

" Q."3 (d)/(dx){(sin x+cos x)/(sqrt(1+sin2x))} =

If d/(dx) (f(x))^(n)=n(f(x))^(n-1)(df(x))/(dx) then (d)/(dx) (sin^3x)=3sin^(2)x.cosx .