Home
Class 11
MATHS
Solution of (2+sqrt3)^(x^2-2x+1) +(2-sq...

Solution of `(2+sqrt3)^(x^2-2x+1) +(2-sqrt3)^(x^2-2x-1)=4/(2-sqrt3)` are (A) `1+-sqrt3,1` (B) `1+-sqrt2,1` (C) `1+-sqrt3,2` (D) `1+-sqrt2,2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve (2+sqrt3)^(x^2-2x+1)+ (2-sqrt3)^(x^2-2x-1)=2/(2-sqrt3) .

If (2+sqrt(3))^(x^(2)-1)+(2-sqrt(3))^(x^(2)-1)=4 then x= ?

Solve (sqrt3+1)^(2_x)+(sqrt3-1)^(2_x)=2^(3x) .

sqrt(x+2sqrt(x-1))+sqrt(x-2sqrt(x-1))>(3)/(2)

Simplify : 1/(sqrt2+sqrt3)-(sqrt3+1)/(2+sqrt3)+(sqrt2+1)/(3+2sqrt2)

Number of solutions of the equation (sqrt(3)+1)^(2x)+(sqrt(3)-1)^(2x)=2^(3x) is

If (sqrt(1 +x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))=3 then x=