Home
Class 12
PHYSICS
A solid cylinder has mass M radius R and...

A solid cylinder has mass M radius R and length / its moment of inertia about an axis passing through its centre and perpendicular to its own axis is

Promotional Banner

Similar Questions

Explore conceptually related problems

A solid cylinder, has mass 'M', radius 'R' and length 'l'. Its moment of inertia about an axis passing through its centre and perpendicular to its own axis is

The moment of inertia of a solid cylinder about its own axis is the same as its moment of inertia about an axis passing through its centre of gravity and perpendicular to its length. The relation between its length L and radius R is :

The moment of inertia of a solid cylinder about its own axis is the same as its moment of inertia about an axis passing through its centre of gravity and perpendicular to its length. The relation between its length L and radius R is :

Moment of a solid cylinder about its axis of symmetry is equal to moment of inertia about an axis passing through its centre and perpendicular to its length.Show that L//r = sqrt3 .

A circular disc of radius R and thickness (R)/(6) has moment of inertia about an axis passing through its centre and perpendicular to its plane. It is melted and recasted into a solid sphere. The moment of inertia of the sphere about its diameter as axis of rotation is

A circular disc of radius R and thickness (R)/(6) has moment of inertia about an axis passing through its centre and perpendicular to its plane. It is melted and recasted into a solid sphere. The moment of inertia of the sphere about its diameter as axis of rotation is

Find the moment of inertia of a cylinder of mass M , radius R and length L about an axis passing through its centre and perpendicular to its symmetry axis. Do this by integrating an elemental disc along the length of the cylinder.

Find the moment of inertia of a cylinder of mass M , radius R and length L about an axis passing through its centre and perpendicular to its symmetry axis. Do this by integrating an elemental disc along the length of the cylinder.

A disc of radius R and thickness has moment of inertia / about an axis passing through its centre and perpendicular to its plane. Disc is melted and recast into a solid sphere. The moment of inertia of a sphere about its diameter is

A solid cylinder of uniform density of radius 2 cm has mass of 50 g. If its length is 12 cm, calculate its moment of inertia about an axis passing through its centre and perpendicular to its length.