Home
Class 12
MATHS
ABDC is a parallelogram and P is the poi...

ABDC is a parallelogram and P is the point of intersection of its diagonals. If O is any point, then `overline(OA)+overline(OB)+overline(OC)+overline(OD)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

overline(OA)+6overline(BC)+overline(AB)+5overline(OB)=

If ABCD be a parallelogram and M be the point of intersection of the diagonals. If O is any point, then OA+OB+OC+OD is a)3 OM b)4 OM c)OM d)2 OM

ABCD is parallelogram and P is the point of intersection of its diagonals.If O is the origin of reference,show that vec OA+vec OB+vec OC+vec OD=4vec OP

ABCD is a parallelogram and P the intersection of the diagonals, O is any point . Show that vec(OA)+vec(OB)+vec(OC)+vec(OD)=4vec(OP) .

If G is the point of concurrence of the median of triangleABC , then overline(GA)+overline(GB)+overline(GC)=

In triangle ABC, if 2overline(AC)=3overline(CB) , then 2overline(OA)+3overline(OB)=

If P is the orthocentre and Q is the circumcentre of triangle(ABC) , then overline(QA)+overline(QB)+overline(QC)=

If P is the orthocentre and Q is the circumcentre of triangleABC , then overline(PA)+overline(PB)+overline(PC)=