Home
Class 12
MATHS
A curve y=f(x) satisfies (d^2y)/dx^2=6x-...

A curve `y=f(x)` satisfies `(d^2y)/dx^2=6x-4` and `f(x)` has local minimum value 5 at `x=1`. If `a` and `b` be the global maximum and global minimum values of `f(x)` in interval `[0,2]`, then `ab` is equal to…

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the maximum and minimum values of f(x)=x+sin2x in the interval [0,\ 2pi]

Find the maximum and minimum values of f(x)=x+sin2x in the interval [0,2 pi]

For a certain curve y=f(x) satisfying (d^(2)y)/(dx^(2))=6x-4, f(x) has a local minimum value 5 when x=1, Find the equation of the curve and also the gobal maximum and global minimum values of f(x) given that 0lexle2.

For a certain curve y=f(x) satisfying (d^(2)y)/(dx^(2))=6x-4, f(x) has a local minimum value 5 when x=1, Find the equation of the curve and also the gobal maximum and global minimum values of f(x) given that 0lexle2.

The curve y =f (x) satisfies (d^(2) y)/(dx ^(2))=6x-4 and f (x) has a local minimum vlaue 5 when x=1. Then f^(prime)(0) is equal to :

The curve y =f (x) satisfies (d^(2) y)/(dx ^(2))=6x-4 and f (x) has a local minimum vlaue 5 when x=1. Then f^(prime)(0) is equal to :

Find the local maximum and local minimum value of f(x)= x^(3)-3x^(2)-24x+5

Find the local maximum and local minimum value of f(x)=secx+logcos^2x ,0ltxlt2pi

For certain curve y=f(x) satisfying (d^(2)y)/(dx^(2))=6x-4, f(x) has local minimum value 5 when x=1 Global maximum value of y=f(x) for x in [0,2] is