Home
Class 10
MATHS
Prove that : sin^(4)theta-cos^(4)theta=...

Prove that : `sin^(4)theta-cos^(4)theta=2sin^(2)theta-1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin^(4)theta-cos^(4)theta=sin^(2)theta-cos^(2)theta

Prove that sin^(4)theta-cos^(4)theta=sin^(2)theta-cos^(2)theta .

Prove that (sin^(4)theta-cos^(4)theta)/(sin^(2)theta-cos^(2)theta)=1

Prove that : cos^(4)theta - cos^(2)theta = sin^(4)theta - sin^(2) theta

Prove that : cos^(4)theta - cos^(2)theta = sin^(4)theta - sin^(2) theta

Prove that : sin^(2)theta+cos^(4)theta=cos^(2)theta+sin^(4)theta

Prove that : sin^(2)theta+cos^(4)theta=cos^(2)theta+sin^(4)theta

Prove that sin^(4)theta+cos^(4)theta=1-(1)/(2)sin^(2)2 theta=(1)/(2)(1+cos^(2)2 theta)

Prove that 2cos^(2)theta-cos^(4)theta+sin^(4)theta=1