Home
Class 11
MATHS
If Sn=1/1^3 +(1+2)/(1^3+2^3)+...+(1+2+3+...

If `S_n=1/1^3 +(1+2)/(1^3+2^3)+...+(1+2+3+...+n)/(1^3+2^3+3^3+...+n^3)` Then `S_n` is not greater than

Promotional Banner

Similar Questions

Explore conceptually related problems

If the sum of n terms of the series 1/1^3+(1+2)/(1^3+2^3)+(1+2+3)/(1^3+2^3+3^3)+..... is S_n , then S_n exceeds 1.99 for all n greater than

If 1/1^3 + (1+2)/(1^3+2^3)+(1+2+3)/(1^3+2^3+3^3) +.......n terms then lim_(n->oo) [S_n]

Let S_(n) = ( 1)/( 1^(3)) + ( 1+2)/( 1^(3) + 2^(3)) +"...." + ( 1+ 2 + "...." + n)/(1^(3) +2^(3)"...."+n^(3)), n = 1,2,3,"....." , Then S_(n) is not greater than :

If the sum of n terms of the series : (1)/( 1^(3)) +( 1+2)/( 1^(3) + 2^(3)) +(1+2+3)/(1^(3) + 2^(3) + 3^(3)) + "......." in S_(n) , then S_(n) exceeds 199 for all n greater than :

If (1)/(1^(3))+(1+2)/(1^(3)+2^(3))+(1+2+3)/(1^(3)+2^(3)+3^(3))+......n terms then lim_(n rarr oo)[S_(n)]

S_(n)=(1)/(1^(3))+(1+2)/(1^(3)+2^(3))+(1+2+3)/(1^(3)+2^(3)+3^(3))+......+(1+2+....+n)/(1^(3)+2^(3)+......+n^(3)).100S_(n)=n then n is equal to :

S_(n) = 1^(3) + 2^(3) + 3^(3) + …... + n^(3) and T_(n) = 1+ 2 + 3+ 4…...n

If t=(1^(2)+2^(2)+3^(2)+...r^(2))/(1^(3)+2^(3)+3^(3)+....+r^(3)), S_(n) = overset(n) underset(r=1) sum(-1)^(r)t_(r) then lim_(n to oo) ((1)/(3)-S_(n))=