Home
Class 12
MATHS
If sum of series (x+ka)+(x^2+(k-2)a)+(x^...

If sum of series `(x+ka)+(x^2+(k-2)a)+(x^3+(k-4)a)+...9` terms is `((x^10-x-45a(x-1))/(x-1))` then value of `k` is:

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x^(2)+10)/((x^(2)+1)^(2))=(k)/(x^(2)+1)+(9)/((x^(2)+1)^(2)), then the value of "k" is

Let lim_(x rarr1)(x^(4)-1)/(x-1)=lim_(k rarr k)(x^(3)-k^(3))/(x^(2)-k^(2)) then value of k is

If the third derivative of (x^(4))/((x-1)(x-2)) is (-12k)/((x-2)^(4))+(6)/((x-1)^(4)) , then the value of k is

If the third derivative of (x^(4))/((x-1)(x-2)) is (-12k)/((x-2)^(4))+(6)/((x-1)^(4)) , then the value of k is

If the third derivative of (x^(4))/((x-1)(x-2)) is (-12k)/((x-2)^(4))+(6)/((x-1)^(4)) , then the value of k is

If Lim_(x to 1) (x^(4)-1)/(x-1)=Lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , find the value of k .

Let S be the sum of the first 9 terms of the series : {x+ka}+{x^(2)+(k+2)a}+{x^(3)+(k+4)a}+{x^(4)+(k+6)a}+... where a!=0 and a!=1 . If S=(x^(10)-x+45a(x-1))/(x-1) , then k is equal to :

If lim_(x to 1) (x^(3) - 1)/(x - 1) = lim_(x to k) (x^(4) - k^(4))/(x^(3) - k^(3)) , find the value of k.

If lim_(x to 1) (x^(3) - 1)/(x - 1) = lim_(x to k) (x^(4) - k^(4))/(x^(3) - k^(3)) , find the value of k.