Home
Class 11
MATHS
Prove that: i) cot^(2)A+cot^(4)A="cose...

Prove that:
i) `cot^(2)A+cot^(4)A="cosec"^(4)A-"cosec"^(2)A`
ii) `tan^(2)A+tan^(4)A=sec^(4)A-sec^(2)A`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: 2sec^(2)A-sec^(4)A-2"cosec"^(2)A+"cosec"^(4)A=cot^(4)A-tan^(4)A

Prove that: 2sec^(2)A-sec^(4)A-2"cosec"^(2)A+"cosec"^(4)A=cot^(4)A-tan^(4)A

(b) prove that tan^(2)A+cot^(2)A+2=sec^(2)A*cosec^(2)A

prove that: tan^(2) phi+cot^(2) phi+2=sec^(2)phi cosec^(2) phi

prove that: tan^(2) theta-cot^(2) theta=sec^(2) theta- cosec^(2) theta

The value of tan^(2)∅+ cot^(2)∅− sec^(2)∅ cosec^(2)∅ is equal to: tan^(2)∅+ cot^(2)∅− sec^(2)∅ cosec^(2)∅ iका मान बराबर है :

Prove that tan^(2)theta+cot^(2)theta+2=sec^(2)theta cosec^(2)theta

The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(2)A)(sec^(2)A cosec^(2)A-1) is equal to

The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(2)A)(sec^(2)A cosec^(2)A-1) is equal to